

BAGUES D'ÉTANCHÉITÉ TRIPLE LÈVRE OKA2L3

O DESCRIPTION

Le profil OKA2L3 est une bague d'étanchéité inversée constituée d'une simple cage métallique extérieure avec renforcement métallique, et d'une triple lèvre d'étanchéité.

O AVANTAGES

Excellente rigidité radiale, en particuliers pour les grands diamètres

Très bonne stabilité au montage, évitant les effets de rebond

Rétention à la graisse

Rétention des contaminants extérieurs de type boue et eau, milieu à fortes sollicitations

Adapté pour moyeux rotatifs avec arbre fixe

APPLICATIONS

Tous types d'applications rotatives Moyeux rotatifs Arbres fixes

• MATÉRIAUX

Elastomère

FKM 70 - 75 Shore A HNBR 70 - 75 Shore A NBR 70 - 75 Shore A

Cage métallique

Acier - AISI 1010

Acier inoxydable - AISI 304

Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre intérieur du joint (Ød)

Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
Ød1 ≤ 50,0	-0,20 / -0,10	-0,30 / -0,15	-0,40 / -0,20
$50,0 < \emptyset d1 \le 80,0$	-0,23 / -0,13	-0,35 / -0,20	-0,45 / -0,25
$80,0 < \emptyset d1 \le 120,0$	-0,25 / -0,15	-0,35 / -0,20	-0,45 / -0,25
$120,0 < \emptyset d1 \le 180,0$	-0,28 / -0,18	-0,45 / -0,25	-0,55 / -0,30
$180,0 < \emptyset d1 \le 300,0$	-0,30 / -0,20	-0,45 / -0,25	-0,55 / -0,30
$300,0 < \emptyset d1 \le 500,0$	-0,35 / -0,23	-0,55 / -0,30	-0,65 / -0,35

Tolérance de circularité

Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère
Ød1 ≤ 50,0	0,18	0,25
$50.0 < \emptyset d1 \le 80.0$	0,25	0,35
80,0 < Ød1 ≤ 120,0	0,30	0,50
$120,0 < \emptyset d1 \le 180,0$	0,40	0,65
180,0 < Ød1 ≤ 300,0	0,25% du diamètre intérieur	0,80
$300,0 < \emptyset d1 \le 500,0$	0,25% du diamètre intérieur	1,00

Tolérance du diamètre extérieur du joint (ØD)

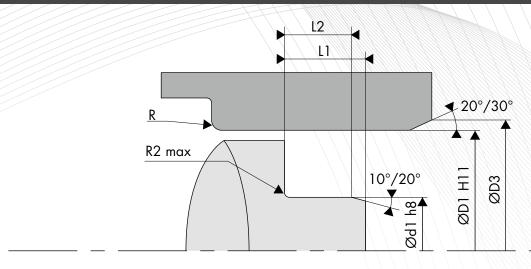
Libre et sans contrainte, le diamètre extérieur des lèvres d'étanchéité est toujours plus grand que le diamètre du moyeu rotatif. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre du moyeu, on peut considérer de manière générale que le diamètre des lèvres d'étanchéité est supérieur entre 0,8 et 3,5 mm.

O DONNÉES TECHNIQUES

Vitesse

Les bagues d'étanchéité triple lèvre peuvent supporter une vitesse maximum de 2,5 m/s.

Calcul de la vitesse linéaire :


v (m/s) = $\frac{[\emptyset \text{ moyeu rotatif (mm) } \times \text{ vitesse (tr/min) } \times \pi]}{60.000}$

Pression

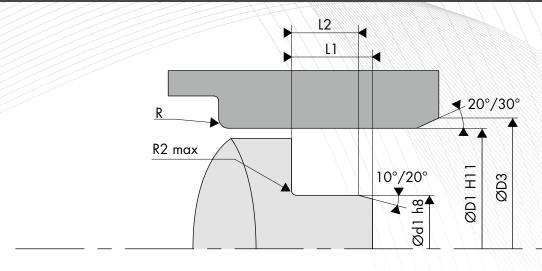
Les bagues d'étanchéité triple lèvre sont généralement utilisées sans pression, voire pour des pressions comprises entre 0,02 et 0,05 MPa maximum.

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	_
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	_	+150°C	+130°C	+90°C	-
	Graisses	-	+130°C	_	_	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	-	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	-	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	-	+70°C	+70°C	_
	Groupe HFD - Fluides de synthèse sans eau	-	-	_	+150°C	-	_	_
	Fuel de chauffage EL + L	-	-	-	-	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
	Eau	-	-	+150°C	+100°C	+100°C	+90°C	-
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	_
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
Frage de temperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

O CONCEPTION DE L'ARBRE FIXE

Etats de surface


Ra	0,8 à 3,2 μm
Rz	6,3 à 16,0 μm
Rmax	≤ 16,0 µm

Tolérance de l'arbre fixe

Diamètre de l'arbre Ød1 (mm)	Tolérance h8 (mm)
3,0 < Ød1 ≤ 6,0	-0,018 / 0
$6.0 < \emptyset d1 \le 10.0$	-0,022 / 0
10,0 < Ød1 ≤ 18,0	-0,027 / 0
$18,0 < \emptyset d1 \le 30,0$	-0,033 / 0
30,0 < Ød1 ≤ 50,0	-0,039 / 0
$50.0 < \emptyset d1 \le 80.0$	-0,046 / 0
80,0 < Ød1 ≤ 120,0	-0,054 / 0
$120,0 < \emptyset d1 \le 180,0$	-0,063 / 0
180,0 < Ød1 ≤ 250,0	-0,072 / 0
$250,0 < \emptyset d1 \le 315,0$	-0,081 / 0
315,0 < Ød1 ≤ 400,0	-0,089 / 0
400,0 < Ød1 ≤ 500,0	-0,097 / 0

Largeur et rayon de l'arbre fixe

Hauteur	Largeur		Rayon
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)
7,00	5,95	7,30	
8,00	6,80	8,30	0,50
10,00	8,50	10,30	
12,00	10,30	12,30	
15,00	12,75	15,30	0,70
20,00	17,00	20,30	

CONCEPTION DU MOYEU ROTATIF

Dureté du moyeu rotatif

Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

Etats de surface

Ra *	0,2 à 0,8 μm
Rz	1,0 à 4,0 µm
Rmax	≤ 6,3 µm

*Ra = 0,1 μ m pour les applications rigoureuses

Tolérance du moyeu rotatif

Diamètre du moyeu rotatif ØD1 (mm)	Tolérance H11 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,075
$6.0 < \emptyset D1 \le 10.0$	0 / +0,090
10,0 < ØD1 ≤ 18,0	0 / +0,110
$18,0 < \emptyset D1 \le 30,0$	0 / +0,130
$30,0 < \emptyset D1 \le 50,0$	0 / +0,160
$50,0 < \emptyset D1 \le 80,0$	0 / +0,190
80,0 < ØD1 ≤ 120,0	0 / +0,220
$120,0 < \emptyset D1 \le 180,0$	0 / +0,250
180,0 < ØD1 ≤ 250,0	0 / +0,290
$250,0 < \emptyset D1 \le 315,0$	0 / +0,320
$315,0 < \emptyset D1 \le 400,0$	0 / +0,360
$400,0 < \emptyset D1 \le 500,0$	0 / +0,400

Chanfrein et rayon

Diamètre du moyeu rotatif ØD1 (mm)	Diamètre du chanfrein ØD3 (mm)	Rayon R (mm)
ØD1 ≤ 10,0	ØD1 + 1,50	2,00
$10,0 < \emptyset D1 \le 20,0$	ØD1 + 2,00	2,00
$20.0 < \emptyset D1 \le 30.0$	ØD1 + 2,50	3,00
$30,0 < \varnothing D1 \leq 40,0$	ØD1 + 3,00	3,00
$40,0 < \emptyset D1 \le 50,0$	ØD1 + 3,50	4,00
$50.0 < \varnothing D1 \le 70.0$	ØD1 + 4,00	4,00
70,0 < ØD1 ≤ 95,0	ØD1 + 4,50	5,00
$95,0 < \emptyset D1 \le 130,0$	ØD1 + 5,50	6,00
$130,0 < \emptyset D1 \le 240,0$	ØD1 + 7,00	8,00
$240,0 < \emptyset D1 \le 500,0$	ØD1 + 11,00	12,00

Excentricité globale

Diamètre du moyeu rotatif ØD1 (mm)	Excentricité globale (mm)
ØD1 ≤ 40,00	0,15
$40,00 < \emptyset D1 \le 80,00$	0,20
80,00 < ØD1 ≤ 120,00	0,30

