

BAGUES D'ÉTANCHÉITÉ TRIPLE LÈVRE KBCWL3

O DESCRIPTION

Le profil KBCWL3 est une bague d'étanchéité constituée d'une simple cage métallique extérieure, avec des systèmes de bossage en élastomère sur la moitié de la cage coté extérieur, et d'une triple lèvre d'étanchéité.

AVANTAGES

Bonne rigidité radiale, en particuliers pour les grands diamètres

Bonne stabilité au montage, évitant les effets de rebond

Bonne étanchéité statique

Bonne compensation de dilatation thermique

Bon transfert de chaleur

Montage facile avec des effets de rebond très limités

Rétention à la graisse

Rétention des contaminants extérieurs de type boue et eau, milieu à fortes sollicitations

APPLICATIONS

Tous types d'applications rotatives Agriculture Construction

Transmission

• MATÉRIAUX

Elastomère

FKM 70 - 75 Shore A HNBR 70 - 75 Shore A NBR 70 - 75 Shore A

Cage métallique

Acier - AISI 1010

Acier inoxydable - AISI 304

Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre extérieur du joint (ØD)

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
ØD1 ≤ 50,0	+0,10 / +0,20	+0,15 / +0,30	+0,20 / +0,40
$50.0 < \varnothing D1 \leq 80.0$	+0,13 / +0,23	+0,20 / +0,35	+0,25 / +0,45
80,0 < ØD1 ≤ 120,0	+0,15 / +0,25	+0,20 / +0,35	+0,25 / +0,45
$120,0 < \emptyset D1 \le 180,0$	+0,18 / +0,28	+0,25 / +0,45	+0,30 / +0,55
$180,0 < \emptyset D1 \le 300,0$	+0,20 / +0,30	+0,25 / +0,45	+0,30 / +0,55
$300,0 < \emptyset D1 \le 500,0$	+0,23 / +0,35	+0,30 / +0,55	+0,35 / +0,65
500,0 < ØD1 ≤ 630,0	+0,23 / +0,35	+0,35 / +0,65	+0,40 / +0,75

Tolérance de circularité

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère
ØD1 ≤ 50,0	0,18	0,25
$50,0 < \emptyset D1 \le 80,0$	0,25	0,35
80,0 < ØD1 ≤ 120,0	0,30	0,50
$120,0 < \emptyset D1 \le 180,0$	0,40	0,65
$180,0 < \emptyset D1 \le 300,0$	0,25% du diamètre extérieur	0,80
$300,0 < \emptyset D1 \le 500,0$	0,25% du diamètre extérieur	1,00
$500,0 < \emptyset D1 \le 630,0$	-	-

Tolérance du diamètre intérieur du joint (Ød)

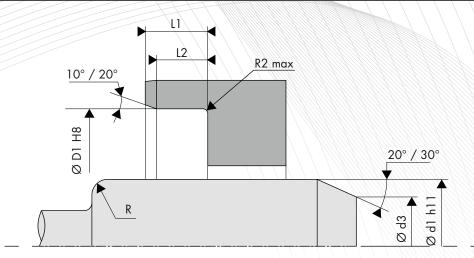
Libre et sans contrainte, le diamètre intérieur des lèvres d'étanchéité est toujours plus petit que le diamètre de l'arbre. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre de l'arbre, on peut considérer de manière générale que le diamètre des lèvres d'étanchéité est inférieur entre 0,8 et 3,5 mm.

O DONNÉES TECHNIQUES

Vitesse

Les bagues d'étanchéité triple lèvre peuvent supporter une vitesse maximum de 2,5 m/s.

Calcul de la vitesse linéaire :


v (m/s) =
$$\frac{[\text{Ø arbre (mm)} \times \text{vitesse (tr/min)} \times \pi]}{60.000}$$

Pression

Les bagues d'étanchéité triple lèvre sont généralement utilisées sans pression, voire pour des pressions comprises entre 0,02 et 0,05 MPa maximum.

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	-	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	_
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	_	+150°C	+130°C	+90°C	_
	Graisses	-	+130°C	_	_	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	_	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	_	+70°C	+70°C	-
	Groupe HFD - Fluides de synthèse sans eau	-	_	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	_	_	-	+100°C	+90°C	_
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
	Eau	-	_	+150°C	+100°C	+100°C	+90°C	_
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	_
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
riage de temperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

CONCEPTION DE L'ARBRE

Dureté de l'arbre

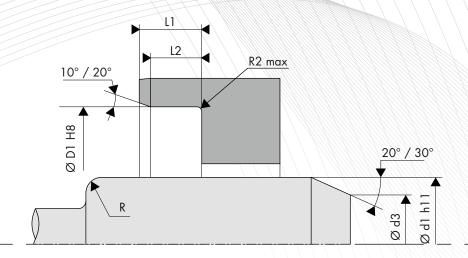
Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

Etats de surface

Ra *	0,2 à 0,8 μm
Rz	1,0 à 4,0 μm
Rmax	≤ 6,3 µm

*Ra = 0,1 μ m pour les applications rigoureuses

Tolérance de l'arbre


Tolérance h11 (mm)
-0,060 / 0
-0,075 / 0
-0,090 / 0
-0,110 / 0
-0,130 / 0
-0,160 / 0
-0,190 / 0
-0,220 / 0
-0,250 / 0
-0,290 / 0
-0,320 / 0
-0,360 / 0
-0,400 / 0

Chanfrein et rayon

Diamètre de l'arbre Ød1 (mm)	Diamètre du chanfrein Ød3 (mm)	Rayon R (mm)
Ød1 ≤ 10,0	Ød1 - 1,50	2,00
$10,0 < \emptyset d1 \le 20,0$	Ød1 - 2,00	2,00
$20,0 < \emptyset d1 \le 30,0$	Ød1 - 2,50	3,00
$30,0 < \emptyset d1 \le 40,0$	Ød1 - 3,00	3,00
$40,0 < \emptyset d1 \le 50,0$	Ød1 - 3,50	4,00
$50,0 < \emptyset d1 \le 70,0$	Ød1 - 4,00	4,00
$70,0 < \emptyset d1 \le 95,0$	Ød1 - 4,50	5,00
$95,0 < \emptyset d1 \le 130,0$	Ød1 - 5,50	6,00
$130,0 < \emptyset d1 \le 240,0$	Ød1 - 7,00	8,00
$240,0 < \emptyset d1 \le 500,0$	Ød1 - 11,00	12,00

Excentricité globale

Diamètre de l'arbre Ød1 (mm)	Excentricité globale (mm)
Ød1 ≤ 40,00	0,15
$40,00 < \emptyset d1 \le 80,00$	0,20
$80,00 < \emptyset d1 \le 120,00$	0,30

CONCEPTION DU LOGEMENT

Etats de surface

Ra	0,8 à 3,2 μm	
Rz	6,3 à 16,0 μm	
Rmax	≤ 16,0 µm	

Tolérance du logement

Diamètre d'alésage ØD1 (mm)	Tolérance H8 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,018
$6.0 < \emptyset D1 \le 10.0$	0 / +0,022
10,0 < ØD1 ≤ 18,0	0 / +0,027
$18,0 < \emptyset D1 \le 30,0$	0 / +0,033
30,0 < ØD1 ≤ 50,0	0 / +0,039
$50,0 < \emptyset D1 \le 80,0$	0 / +0,046
80,0 < ØD1 ≤ 120,0	0 / +0,054
$120,0 < \emptyset D1 \le 180,0$	0 / +0,063
180,0 < ØD1 ≤ 250,0	0 / +0,072
$250,0 < \emptyset D1 \le 315,0$	0 / +0,081
315,0 < ØD1 ≤ 400,0	0 / +0,089
$400,0 < \emptyset D1 \le 500,0$	0 / +0,097
500,0 < ØD1 ≤ 630,0	0 / +0,110

Largeur et rayon du logement

Hauteur	Larg	Rayon	
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)
7,00	5,95	7,30	
8,00	6,80	8,30	0,50
10,00	8,50	10,30	
12,00	10,30	12,30	
15,00	12,75	15,30	0,70
20,00	17,00	20,30	

