

BAGUES D'ÉTANCHÉITÉ STANDARD

DB₂

O DESCRIPTION

Le profil DB2 est une bague d'étanchéité constituée d'une simple cage métallique extérieure, et d'une double lèvre primaire d'étanchéité avec ressorts intégrés, séparatrice de fluides.

O AVANTAGES

Bonne rigidité radiale, en particuliers pour les grands diamètres

Bonne stabilité au montage, évitant les effets de rebond

Etanchéité aux fluides à faibles et fortes viscosités

Lèvres d'étanchéité modernes avec de faibles forces radiales

Système de séparation de fluides

APPLICATIONS

Tous types d'applications rotatives Machine-outils

Agriculture

Construction

Transmission

Boîtes de vitesses

Moteurs

Pompes

• MATÉRIAUX

Elastomère

ACM 70 - 75 Shore A EPDM 70 - 75 Shore A

FKM 70 - 75 Shore A

HNBR 70 - 75 Shore A NBR 70 - 75 Shore A

Cage métallique

Acier - AISI 1010

Acier inoxydable - AISI 304

Acier inoxydable - AISI 316

Ressort

Acier - AISI 1070 - 1090 Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre extérieur du joint (ØD)

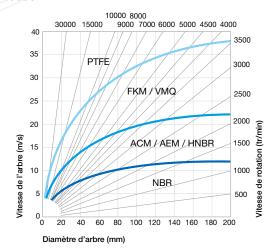
Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
ØD1 ≤ 50,0	+0,10 / +0,20	+0,15 / +0,30	+0,20 / +0,40
$50,0 < \emptyset D1 \le 80,0$	+0,13 / +0,23	+0,20 / +0,35	+0,25 / +0,45
$80,0 < \emptyset D1 \le 120,0$	+0,15 / +0,25	+0,20 / +0,35	+0,25 / +0,45
$120,0 < \emptyset D1 \le 180,0$	+0,18 / +0,28	+0,25 / +0,45	+0,30 / +0,55
$180,0 < \emptyset D1 \le 300,0$	+0,20 / +0,30	+0,25 / +0,45	+0,30 / +0,55
$300,0 < \emptyset D1 \le 500,0$	+0,23 / +0,35	+0,30 / +0,55	+0,35 / +0,65
$500,0 < \emptyset D1 \le 630,0$	+0,23 / +0,35	+0,35 / +0,65	+0,40 / +0,75

Tolérance de circularité

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère
ØD1 ≤ 50,0	0,18	0,25
50,0 < ØD1 ≤ 80,0	0,25	0,35
80,0 < ØD1 ≤ 120,0	0,30	0,50
120,0 < ØD1 ≤ 180,0	0,40	0,65
180,0 < ØD1 ≤ 300,0	0,25% du diamètre extérieur	0,80
300,0 < ØD1 ≤ 500,0	0,25% du diamètre extérieur	1,00
500,0 < ØD1 ≤ 630,0	-	-

Tolérance du diamètre intérieur du joint (Ød)

Libre et sans contrainte, le diamètre intérieur de la lèvre d'étanchéité est toujours plus petit que le diamètre de l'arbre. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre de l'arbre, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est inférieur entre 0,8 et 3,5 mm.


Rainures de refoulement

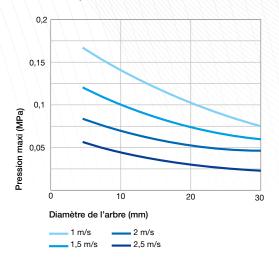
Sens horaire	Sens anti-horaire	Bi-directionnel
R	L	H0

D'autres types de rainures de refoulement sont réalisables selon vos spécifications, veuillez contacter nos experts.

O DONNÉES TECHNIQUES

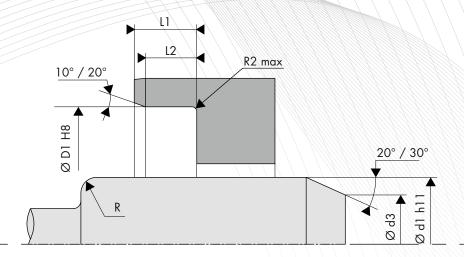
Vitesse

Les bagues d'étanchéité intégrant une lèvre additionnelle de protection sont limitées à une vitesse de 8 m/s.


Calcul de la vitesse linéaire :

v (m/s) =
$$\frac{[\text{Ø arbre (mm)} \times \text{vitesse (tr/min)} \times \pi]}{60.000}$$

Pression


Les bagues d'étanchéité standard sont généralement utilisées sans pression, voire pour des pressions comprises entre 0,02 et 0,05 MPa maxi.

Pour des bagues d'étanchéité standard en NBR ou en FKM utilisées sur un arbre inférieur à 30 mm, des pressions plus élevées sont acceptables sous réserve de test.

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	_
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	-	+150°C	+130°C	+90°C	_
	Graisses	-	+130°C	_	_	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	_	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	_	+70°C	+70°C	_
	Groupe HFD - Fluides de synthèse sans eau	-	-	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	-	-	-	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
	Eau	-	-	+150°C	+100°C	+100°C	+90°C	-
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	_
Diago do tompóraturo	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
Plage de température	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

O CONCEPTION DE L'ARBRE

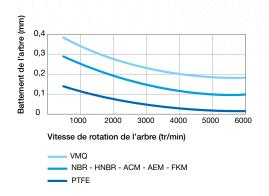
Dureté de l'arbre

Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

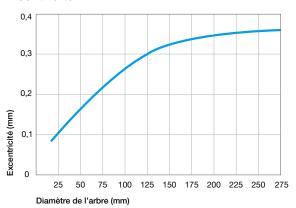
Etats de surface

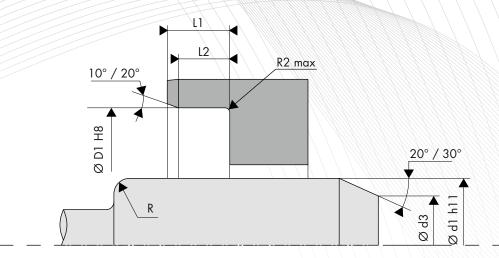
Ra *	0,2 à 0,8 μm
Rz	1,0 à 4,0 μm
Rmax	≤ 6,3 µm

*Ra = 0,1 μ m pour les applications rigoureuses


Tolérance de l'arbre

Diamètre de l'arbre Ød1 (mm)	Tolérance h11 (mm)
Ød1 ≤ 3,0	-0,060 / 0
$3.0 < \emptyset d1 \le 6.0$	-0,075 / 0
$6.0 < \emptyset d1 \le 10.0$	-0,090 / 0
$10,0 < \emptyset d1 \le 18,0$	-0,110 / 0
$18,0 < \emptyset d1 \le 30,0$	-0,130 / 0
$30,0 < \emptyset d1 \le 50,0$	-0,160 / 0
$50,0 < \emptyset d1 \le 80,0$	-0,190 / 0
$80,0 < \emptyset d1 \le 120,0$	-0,220 / 0
120,0 < Ød1 ≤ 180,0	-0,250 / 0
$180,0 < \emptyset d1 \le 250,0$	-0,290 / 0
$250,0 < \emptyset d1 \le 315,0$	-0,320 / 0
$315,0 < \emptyset d1 \le 400,0$	-0,360 / 0
$400,0 < \emptyset d1 \le 500,0$	-0,400 / 0


Chanfrein et rayon


onamon or ray	···	
Diamètre de l'arbre Ød1 (mm)	Diamètre du chanfrein Ød3 (mm)	Rayon R (mm)
Ød1 ≤ 10,0	Ød1 - 1,50	2,00
$10,0 < \emptyset d1 \le 20,0$	Ød1 - 2,00	2,00
$20,0 < \emptyset d1 \le 30,0$	Ød1 - 2,50	3,00
$30,0< \text{Ød1} \leq 40,0$	Ød1 - 3,00	3,00
$40,0 < \emptyset d1 \le 50,0$	Ød1 - 3,50	4,00
$50,0 < \emptyset d1 \le 70,0$	Ød1 - 4,00	4,00
70,0 < Ød1 ≤ 95,0	Ød1 - 4,50	5,00
$95,0 < \emptyset d1 \le 130,0$	Ød1 - 5,50	6,00
$130,0 < \emptyset d1 \le 240,0$	Ød1 - 7,00	8,00
$240,0 < \emptyset d1 \le 500,0$	Ød1 - 11,00	12,00

Battement de l'arbre

Excentricité

CONCEPTION DU LOGEMENT

Etats de surface

Ra	0,8 à 3,2 μm	
Rz	6,3 à 16,0 µm	
Rmax	≤ 16,0 µm	

Tolérance du logement

Diamètre d'alésage ØD1 (mm)	Tolérance H8 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,018
$6.0 < \emptyset D1 \le 10.0$	0 / +0,022
10,0 < ØD1 ≤ 18,0	0 / +0,027
$18,0 < \emptyset D1 \le 30,0$	0 / +0,033
$30,0 < \emptyset D1 \le 50,0$	0 / +0,039
$50,0 < \emptyset D1 \le 80,0$	0 / +0,046
80,0 < ØD1 ≤ 120,0	0 / +0,054
$120,0 < \emptyset D1 \le 180,0$	0 / +0,063
180,0 < ØD1 ≤ 250,0	0 / +0,072
$250,0 < \emptyset D1 \le 315,0$	0 / +0,081
$315,0 < \emptyset D1 \le 400,0$	0 / +0,089
$400,0 < \emptyset D1 \le 500,0$	0 / +0,097
500,0 < ØD1 ≤ 630,0	0 / +0,110

Largeur et rayon du logement

Hauteur	Largeur		Rayon	
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)	
7,00	5,95	7,30		
8,00	6,80	8,30	0,50	
10,00	8,50	10,30		
12,00	10,30	12,30		
15,00	12,75	15,30	0,70	
20,00	17,00	20,30		

O DIMENSIONS

Code article	Diamètre de l'arbre Ød1 h11	Diamètre d'alésage ØD1 H8	Hauteur du joint H1
DB2 45x72x11	45,00	72,00	11,00
DB2 60x82x18	60,00	82,00	18,00
DB2 62x85x12	62,00	85,00	12,00
DB2 80x105x20	80,00	105,00	20,00
DB2 90x115x20	90,00	115,00	20,00

	Code article	Diamètre de l'arbre Ød1 h11	Diamètre d'alésage ØD1 H8	Hauteur du joint H1
	DB2 110x140x22	110,00	140,00	22,00
	DB2 120x150x22	120,00	150,00	22,00
	DB2 122x152x21	122,00	152,00	21,00
	DB2 160x195x21	160,00	195,00	21,00
	DB2 200x240x15	200,00	240,00	15,00

