

BAGUES D'ÉTANCHÉITÉ INVERSÉES

O DESCRIPTION

Le profil OTCW est une bague d'étanchéité inversée constituée d'une simple cage métallique avec des systèmes de bossage en élastomère sur la partie extérieure de la cage, d'une lèvre primaire d'étanchéité avec ressort intégré et d'une lèvre additionnelle anti-pollution.

AVANTAGES

Très bonne étanchéité statique

Très bonne compensation de dilatation thermique

Rugosité supérieure autorisée au niveau du logement

Réduction des risques de corrosion

Montage facile avec des effets de rebond très limités

Etanchéité aux fluides à faibles et fortes viscosités

Lèvre d'étanchéité primaire moderne avec de faibles forces radiales

Protection contre les contaminants indésirables de l'air

Adapté pour moyeux rotatifs avec arbre fixe

APPLICATIONS

Tous types d'applications rotatives Moyeux rotatifs Arbres fixes

O MATÉRIAUX

Elastomère

ACM 70 - 75 Shore A EPDM 70 - 75 Shore A FKM 70 - 75 Shore A HNBR 70 - 75 Shore A NBR 70 - 75 Shore A

Cage métallique

Acier - AISI 1010

Ressort

Acier - AISI 1070 - 1090 Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre intérieur du joint (Ød)

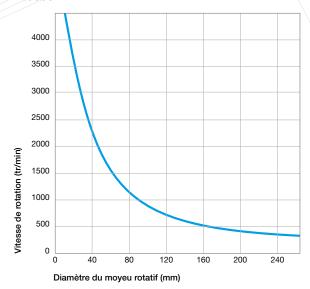
Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
Ød1 ≤ 50,0	-0,20 / -0,10	-0,30 / -0,15	-0,40 / -0,20
$50,0 < \emptyset d1 \le 80,0$	-0,23 / -0,13	-0,35 / -0,20	-0,45 / -0,25
$80.0 < \emptyset d1 \le 120.0$	-0,25 / -0,15	-0,35 / -0,20	-0,45 / -0,25
$120,0 < \emptyset d1 \le 180,0$	-0,28 / -0,18	-0,45 / -0,25	-0,55 / -0,30
$180,0 < \emptyset d1 \le 300,0$	-0,30 / -0,20	-0,45 / -0,25	-0,55 / -0,30
$300,0 < \emptyset d1 \le 500,0$	-0,35 / -0,23	-0,55 / -0,30	-0,65 / -0,35

Tolérance de circularité

Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère
Ød1 ≤ 50,0	0,18	0,25
$50.0 < \emptyset d1 \le 80.0$	0,25	0,35
80,0 < Ød1 ≤ 120,0	0,30	0,50
$120,0 < \emptyset d1 \le 180,0$	0,40	0,65
180,0 < Ød1 ≤ 300,0	0,25% du diamètre intérieur	0,80
$300,0 < \emptyset d1 \le 500,0$	0,25% du diamètre intérieur	1,00

Tolérance du diamètre extérieur du joint (ØD)

Libre et sans contrainte, le diamètre extérieur de la lèvre d'étanchéité est toujours plus grand que le diamètre du moyeu rotatif. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre du moyeu, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est supérieur entre 0,8 et 3,5 mm.


Rainures de refoulement

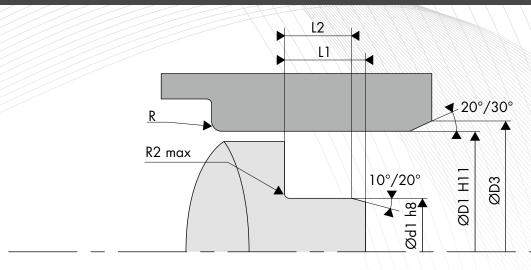
Sens horaire	Sens anti-horaire	Bi-directionnel
R	L	H0

D'autres types de rainures de refoulement sont réalisables selon vos spécifications, veuillez contacter nos experts.

O DONNÉES TECHNIQUES

Vitesse

Calcul de la vitesse linéaire :


v (m/s) =
$$\frac{[\emptyset \text{ moyeu rotatif (mm) } \times \text{ vitesse (tr/min) } \times \pi]}{60.000}$$

Pression

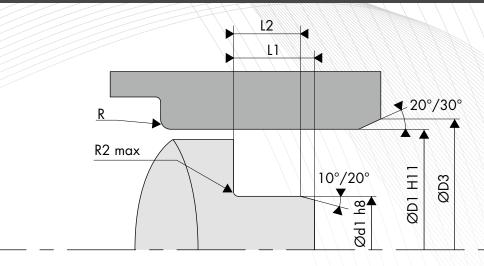
Les bagues d'étanchéité inversées sont généralement utilisées sans pression, voire pour des pressions comprises entre 0,02 et 0,05 MPa maximum.

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	-
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	_	+150°C	+130°C	+90°C	_
	Graisses	-	+130°C	_	_	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	_	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	_	+70°C	+70°C	_
	Groupe HFD - Fluides de synthèse sans eau	-	-	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	-	_	_	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
Autres Hulues	Eau	-	_	+150°C	+100°C	+100°C	+90°C	_
	Eau lessivelle	-	_	130°C	100°C	100°C	90°C	_
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
riage de temperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

O CONCEPTION DE L'ARBRE FIXE

Etats de surface


Ra	1,6 à 6,3 μm
Rz	10,0 à 25,0 μm
Rmax	≤ 25,0 µm

Tolérance de l'arbre fixe

Diamètre de l'arbre Ød1 (mm)	Tolérance h8 (mm)
3,0 < Ød1 ≤ 6,0	-0,018 / 0
$6.0 < \emptyset d1 \le 10.0$	-0,022 / 0
10,0 < Ød1 ≤ 18,0	-0,027 / 0
$18,0 < \emptyset d1 \le 30,0$	-0,033 / 0
30,0 < Ød1 ≤ 50,0	-0,039 / 0
50,0 < Ød1 ≤ 80,0	-0,046 / 0
80,0 < Ød1 ≤ 120,0	-0,054 / 0
$120,0 < \emptyset d1 \le 180,0$	-0,063 / 0
180,0 < Ød1 ≤ 250,0	-0,072 / 0
$250,0 < \emptyset d1 \le 315,0$	-0,081 / 0
315,0 < Ød1 ≤ 400,0	-0,089 / 0
400,0 < Ød1 ≤ 500,0	-0,097 / 0

Largeur et rayon de l'arbre fixe

Hauteur	Lar	Rayon	
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)
7,00	5,95	7,30	
8,00	6,80	8,30	0,50
10,00	8,50	10,30	
12,00	10,30	12,30	
15,00	12,75	15,30	0,70
20,00	17,00	20,30	

CONCEPTION DU MOYEU ROTATIF

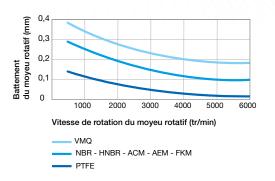
Dureté du moyeu rotatif

Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

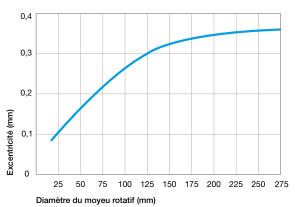
Etats de surface

Ra *	0,2 à 0,8 μm
Rz	1,0 à 4,0 μm
Rmax	≤ 6,3 µm

*Ra = 0,1 µm pour les applications rigoureuses


Tolérance du moyeu rotatif

Diamètre du moyeu rotatif ØD1 (mm)	Tolérance H11 (mm)
ØD1 ≤ 3,0	0 / +0,060
$3.0 < \emptyset D1 \le 6.0$	0 / +0,075
$6,0 < \emptyset D1 \le 10,0$	0 / +0,090
$10.0 < \emptyset D1 \le 18.0$	0 / +0,110
$18,0 < \emptyset D1 \le 30,0$	0 / +0,130
$30,0 < \emptyset D1 \le 50,0$	0 / +0,160
$50,0 < \emptyset D1 \le 80,0$	0 / +0,190
$80,0 < \emptyset D1 \le 120,0$	0 / +0,220
120,0 < ØD1 ≤ 180,0	0 / +0,250
$180,0 < \emptyset D1 \le 250,0$	0 / +0,290
250,0 < ØD1 ≤ 315,0	0 / +0,320
$315,0 < \emptyset D1 \le 400,0$	0 / +0,360
400,0 < ØD1 ≤ 500,0	0 / +0,400


Chanfrein et rayon

Diamètre du moyeu rotatif ØD1 (mm)	Diamètre du chanfrein ØD3 (mm)	Rayon R (mm)
ØD1 ≤ 10,0	ØD1 + 1,50	2,00
$10,0 < \varnothing D1 \leq 20,0$	ØD1 + 2,00	2,00
$20,0 < \emptyset D1 \le 30,0$	ØD1 + 2,50	3,00
$30,0 < \varnothing D1 \leq 40,0$	ØD1 + 3,00	3,00
$40,0 < \emptyset D1 \le 50,0$	ØD1 + 3,50	4,00
$50,0< \varnothing D1 \leq 70,0$	ØD1 + 4,00	4,00
$70,0 < \emptyset D1 \le 95,0$	ØD1 + 4,50	5,00
$95,0 < \emptyset D1 \le 130,0$	ØD1 + 5,50	6,00
$130,0 < \emptyset D1 \le 240,0$	ØD1 + 7,00	8,00
$240,0 < \emptyset D1 \le 500,0$	ØD1 + 11,00	12,00

Battement du moyeu rotatif

Excentricité

