

BAGUES D'ÉTANCHÉITÉ HAUTE PRESSION TCWHP

O DESCRIPTION

Le profil TCWHP est une bague d'étanchéité haute pression constituée d'une simple cage métallique avec des systèmes de bossage en élastomère sur la partie extérieure de la cage, d'une lèvre primaire d'étanchéité avec ressort intégré et d'une additionnelle lèvre anti-pollution.

AVANTAGES

Très bonne étanchéité statique

Très bonne compensation de dilatation thermique

Rugosité supérieure autorisée au niveau du logement

Réduction des risques de corrosion

Montage facile avec des effets de rebond très limités

Etanchéité aux fluides à faibles et fortes viscosités

Lèvre d'étanchéité primaire conçue pour des pressions élevées jusqu'à 1 MPa

Protection contre les contaminants indésirables de l'air

APPLICATIONS

Tous types d'applications rotatives Moteurs à 2 temps Commandes hydrostatiques (Moteurs et pompes)

O MATÉRIAUX

Elastomère

FKM 75 - 80 - 85 - 90 Shore A HNBR 75 - 80 - 85 - 90 Shore A NBR 75 - 80 - 85 - 90 Shore A

Cage métallique

Acier - AISI 1010

Ressort

Acier - AISI 1070 - 1090

CONCEPTION DU JOINT

Tolérance du diamètre extérieur du joint (ØD)

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
ØD1 ≤ 50,0	+0,10 / +0,20	+0,15 / +0,30	+0,20 / +0,40
$50.0 < \varnothing D1 \leq 80.0$	+0,13 / +0,23	+0,20 / +0,35	+0,25 / +0,45
80,0 < ØD1 ≤ 120,0	+0,15 / +0,25	+0,20 / +0,35	+0,25 / +0,45
$120,0 < \emptyset D1 \le 180,0$	+0,18 / +0,28	+0,25 / +0,45	+0,30 / +0,55
$180,0 < \emptyset D1 \le 300,0$	+0,20 / +0,30	+0,25 / +0,45	+0,30 / +0,55
$300,0 < \emptyset D1 \le 500,0$	+0,23 / +0,35	+0,30 / +0,55	+0,35 / +0,65
500,0 < ØD1 ≤ 630,0	+0,23 / +0,35	+0,35 / +0,65	+0,40 / +0,75

Tolérance de circularité

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère
ØD1 ≤ 50,0	0,18	0,25
50,0 < ØD1 ≤ 80,0	0,25	0,35
80,0 < ØD1 ≤ 120,0	0,30	0,50
120,0 < ØD1 ≤ 180,0	0,40	0,65
180,0 < ØD1 ≤ 300,0	0,25% du diamètre extérieur	0,80
300,0 < ØD1 ≤ 500,0	0,25% du diamètre extérieur	1,00
500,0 < ØD1 ≤ 630,0	-	-

Tolérance du diamètre intérieur du joint (Ød)

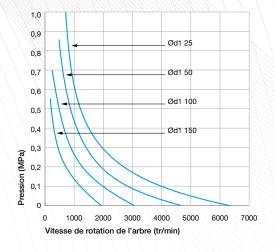
Libre et sans contrainte, le diamètre intérieur de la lèvre d'étanchéité est toujours plus petit que le diamètre de l'arbre. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre de l'arbre, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est inférieur entre 0,8 et 3,5 mm.

Rainures de refoulement

Sens horaire	Sens anti-horaire	Bi-directionnel
R	L	H0

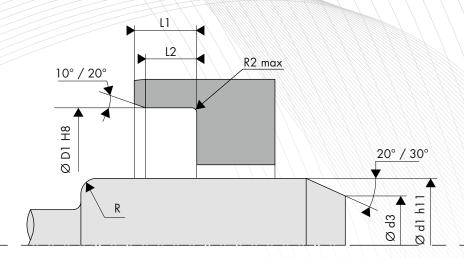
D'autres types de rainures de refoulement sont réalisables selon vos spécifications, veuillez contacter nos experts.

O DONNÉES TECHNIQUES


Vitesse - Pression

Les élévations de pression génèrent une perturbation de l'hydrodynamique au niveau de l'arête d'étanchéité et provoquent une augmentation du serrage de la lèvre d'étanchéité sur l'arbre, du frottement, de la température au point de contact entre la lèvre d'étanchéité sur l'arbre.

Code	Matériaux	Pression maxi	Vitesse maxi
K8	NBR 80 Shore A	1,0 MPa	< 10 m/s
Y0	NBR 90 Shore A	1,5 MPa	< 2 m/s


Calcul de la vitesse linéaire :

v (m/s) =
$$\frac{[\text{Ø arbre (mm)} \times \text{vitesse (tr/min)} \times \pi]}{60.000}$$

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	-
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	-
	Huiles hydrauliques	+120°C	+130°C	_	+150°C	+130°C	+90°C	-
	Graisses	-	+130°C	_	_	+100°C	+90°C	-
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	_	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	_	+70°C	+70°C	-
	Groupe HFD - Fluides de synthèse sans eau	-	_	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	_	_	_	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
Autres fluides	Eau	-	_	+150°C	+100°C	+100°C	+90°C	-
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	-
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
Plage de lemperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

CONCEPTION DE L'ARBRE

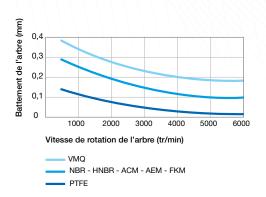
Dureté de l'arbre

Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

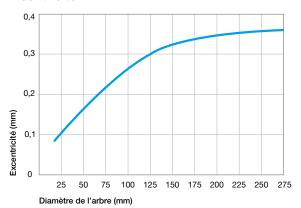
Etats de surface

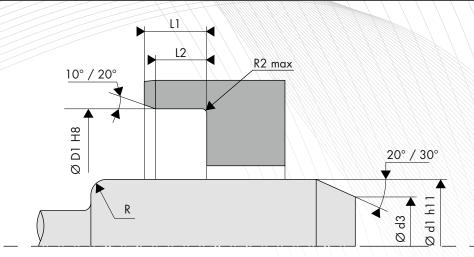
Ra *	0,2 à 0,4 μm	
Rz	1,0 à 3,0 μm	
Rmax	≤ 6,3 µm	

*Ra = 0,1 μ m pour les applications rigoureuses


Tolérance de l'arbre

Diamètre de l'arbre Ød1 (mm)	Tolérance h11 (mm)
Ød1 ≤ 3,0	-0,060 / 0
$3.0 < \emptyset d1 \le 6.0$	-0,075 / 0
$6,0 < \emptyset d1 \le 10,0$	-0,090 / 0
$10,0 < \emptyset d1 \le 18,0$	-0,110 / 0
$18,0 < \emptyset d1 \le 30,0$	-0,130 / 0
$30,0 < \emptyset d1 \le 50,0$	-0,160 / 0
$50,0 < \emptyset d1 \le 80,0$	-0,190 / 0
$80,0 < \emptyset d1 \le 120,0$	-0,220 / 0
$120,0 < \emptyset d1 \le 180,0$	-0,250 / 0
$180,0 < \emptyset d1 \le 250,0$	-0,290 / 0
250,0 < Ød1 ≤ 315,0	-0,320 / 0
$315,0 < \emptyset d1 \le 400,0$	-0,360 / 0
$400,0 < \emptyset d1 \le 500,0$	-0,400 / 0


Chanfrein et rayon


onamon or ay	···	
Diamètre de l'arbre Ød1 (mm)	Diamètre du chanfrein Ød3 (mm)	Rayon R (mm)
Ød1 ≤ 10,0	Ød1 - 1,50	2,00
$10,0 < \emptyset d1 \le 20,0$	Ød1 - 2,00	2,00
$20,0 < \emptyset d1 \le 30,0$	Ød1 - 2,50	3,00
$30,0< \text{Ød1} \leq 40,0$	Ød1 - 3,00	3,00
$40,0 < \emptyset d1 \le 50,0$	Ød1 - 3,50	4,00
$50,0 < \emptyset d1 \le 70,0$	Ød1 - 4,00	4,00
70,0 < Ød1 ≤ 95,0	Ød1 - 4,50	5,00
$95,0 < \emptyset d1 \le 130,0$	Ød1 - 5,50	6,00
$130,0 < \emptyset d1 \le 240,0$	Ød1 - 7,00	8,00
$240,0 < \emptyset d1 \le 500,0$	Ød1 - 11,00	12,00

Battement de l'arbre

Excentricité

O CONCEPTION DU LOGEMENT

Etats de surface

Ra	1,6 à 6,3 µm
Rz	10,0 à 25,0 μm
Rmax	≤ 25,0 µm

Tolérance du logement

Diamètre d'alésage ØD1 (mm)	Tolérance H8 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,018
$6.0 < \emptyset D1 \le 10.0$	0 / +0,022
10,0 < ØD1 ≤ 18,0	0 / +0,027
$18,0 < \emptyset D1 \le 30,0$	0 / +0,033
30,0 < ØD1 ≤ 50,0	0 / +0,039
$50,0 < \emptyset D1 \le 80,0$	0 / +0,046
80,0 < ØD1 ≤ 120,0	0 / +0,054
$120,0 < \emptyset D1 \le 180,0$	0 / +0,063
180,0 < ØD1 ≤ 250,0	0 / +0,072
$250,0 < \emptyset D1 \le 315,0$	0 / +0,081
315,0 < ØD1 ≤ 400,0	0 / +0,089
$400,0 < \emptyset D1 \le 500,0$	0 / +0,097
500,0 < ØD1 ≤ 630,0	0 / +0,110

Largeur et rayon du logement

Hauteur	Larg	Rayon	
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)
7,00	5,95	7,30	
8,00	6,80	8,30	0,50
10,00	8,50	10,30	
12,00	10,30	12,30	
15,00	12,75	15,30	0,70
20,00	17,00	20,30	

