

BAGUES D'ÉTANCHÉITÉ AVEC REVÊTEMENT EN PTFE

O DESCRIPTION

Le profil TBJ est une bague d'étanchéité constituée d'une simple cage métallique extérieure avec revêtement en élastomère sur la partie interne, et d'une double lèvre d'étanchéité avec revêtement en PTFE et ressort intégré.

O AVANTAGES

Bonne rigidité radiale, en particuliers pour les grands diamètres

Bonne stabilité au montage, évitant les effets de rebond

Etanchéité aux fluides à faibles et fortes viscosités, et dans les milieux à faible lubrification

Lèvre d'étanchéité primaire moderne avec de faibles forces radiales

Protection contre les contaminants indésirables de l'air

Bande PTFE adhérisée pour un faible coefficient de frottement acceptant des vitesses plus élevées

APPLICATIONS

Environnements à faible lubrification

MATÉRIAUX

Elastomère

ACM 70 - 75 Shore A EPDM 70 - 75 Shore A FKM 70 - 75 Shore A HNBR 70 - 75 Shore A NBR 70 - 75 Shore A

Adhérisation lèvre

PTFE

Cage métallique

Acier - AISI 1010 Acier inoxydable - AISI 304 Acier inoxydable - AISI 316

Ressort

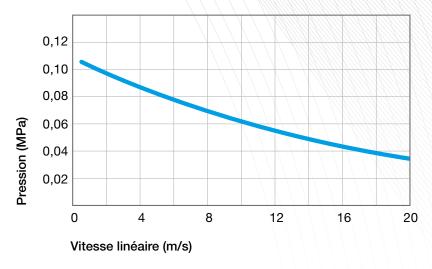
Acier - AISI 1070 - 1090 Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre extérieur du joint (ØD)

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
ØD1 ≤ 50,0	+0,10 / +0,20	+0,15 / +0,30	+0,20 / +0,40
$50,0 < \emptyset D1 \le 80,0$	+0,13 / +0,23	+0,20 / +0,35	+0,25 / +0,45
80,0 < ØD1 ≤ 120,0	+0,15 / +0,25	+0,20 / +0,35	+0,25 / +0,45
$120,0 < \emptyset D1 \le 180,0$	+0,18 / +0,28	+0,25 / +0,45	+0,30 / +0,55
$180,0 < \emptyset D1 \le 300,0$	+0,20 / +0,30	+0,25 / +0,45	+0,30 / +0,55
$300,0 < \emptyset D1 \le 500,0$	+0,23 / +0,35	+0,30 / +0,55	+0,35 / +0,65
500,0 < ØD1 ≤ 630,0	+0,23 / +0,35	+0,35 / +0,65	+0,40 / +0,75

Tolérance de circularité

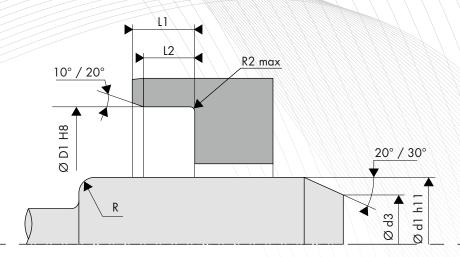

Diamètre d'alésage ØD1 (mm)	Cage métallique apparente	Revêtement en élastomère
ØD1 ≤ 50,0	0,18	0,25
$50,0 < \emptyset D1 \le 80,0$	0,25	0,35
80,0 < ØD1 ≤ 120,0	0,30	0,50
$120,0 < \emptyset D1 \le 180,0$	0,40	0,65
180,0 < ØD1 ≤ 300,0	0,25% du diamètre extérieur	0,80
$300,0 < \emptyset D1 \le 500,0$	0,25% du diamètre extérieur	1,00
500,0 < ØD1 ≤ 630,0	-	-

Tolérance du diamètre intérieur du joint (Ød)

Libre et sans contrainte, le diamètre intérieur de la lèvre d'étanchéité est toujours plus petit que le diamètre de l'arbre. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre de l'arbre, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est inférieur entre 0,8 et 3,5 mm.

O DONNÉES TECHNIQUES

Rapport Vitesse / Pression



Calcul de la vitesse linéaire :

v (m/s) =
$$\frac{[\text{Ø arbre (mm)} \times \text{vitesse (tr/min)} \times \pi]}{60.000}$$

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
Fluides	en contact	ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	_
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	-	+150°C	+130°C	+90°C	-
	Graisses	-	+130°C	_	_	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	_	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	_	+70°C	+70°C	_
	Groupe HFD - Fluides de synthèse sans eau	-	-	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	-	-	-	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
Autres Ilulues	Eau	-	_	+150°C	+100°C +100°C +9	+90°C	_	
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	_
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
i lage de telliperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

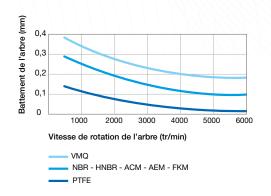
O CONCEPTION DE L'ARBRE

Dureté de l'arbre

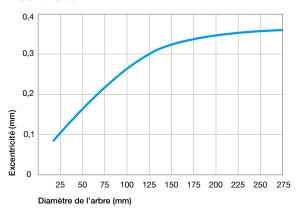
Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

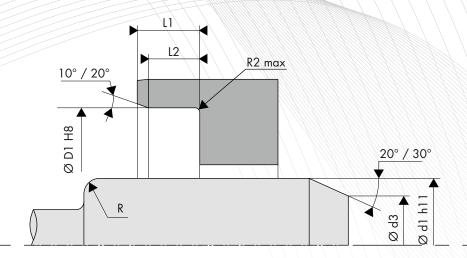
Etats de surface

Ra	0,1 à 0,4 μm
Rz	1,0 à 4,0 μm
Rmax	≤ 6,3 µm


Tolérance de l'arbre

Diamètre de l'arbre Ød1 (mm)	Tolérance h11 (mm)
Ød1 ≤ 3,0	-0,060 / 0
$3.0 < \emptyset d1 \le 6.0$	-0,075 / 0
$6,0 < \emptyset d1 \le 10,0$	-0,090 / 0
10,0 < Ød1 ≤ 18,0	-0,110 / 0
18,0 < Ød1 ≤ 30,0	-0,130 / 0
$30,0 < \emptyset d1 \le 50,0$	-0,160 / 0
50,0 < Ød1 ≤ 80,0	-0,190 / 0
$80,0 < \emptyset d1 \le 120,0$	-0,220 / 0
120,0 < Ød1 ≤ 180,0	-0,250 / 0
180,0 < Ød1 ≤ 250,0	-0,290 / 0
250,0 < Ød1 ≤ 315,0	-0,320 / 0
$315,0 < \emptyset d1 \le 400,0$	-0,360 / 0
$400,0 < \emptyset d1 \le 500,0$	-0,400 / 0


Chanfrein et rayon


Onamical cerayon						
Diamètre de l'arbre Ød1 (mm)	Diamètre du chanfrein Ød3 (mm)	Rayon R (mm)				
Ød1 ≤ 10,0	Ød1 - 1,50	2,00				
$10,0< \emptyset d1 \leq 20,0$	Ød1 - 2,00	2,00				
$20,0 < \emptyset d1 \le 30,0$	Ød1 - 2,50	3,00				
$30,0< \emptyset d1 \leq 40,0$	Ød1 - 3,00	3,00				
$40,0 < \emptyset d1 \le 50,0$	Ød1 - 3,50	4,00				
$50,0< \emptyset d1 \leq 70,0$	Ød1 - 4,00	4,00				
$70,0 < \emptyset d1 \le 95,0$	Ød1 - 4,50	5,00				
$95,0 < \emptyset d1 \le 130,0$	Ød1 - 5,50	6,00				
$130,0 < \emptyset d1 \le 240,0$	Ød1 - 7,00	8,00				
$240,0 < \emptyset d1 \le 500,0$	Ød1 - 11,00	12,00				

Battement de l'arbre

Excentricité

O CONCEPTION DU LOGEMENT

Etats de surface

Ra	0,8 à 3,2 μm	
Rz	6,3 à 16,0 μm	
Rmax	≤ 16,0 µm	

Tolérance du logement

Diamètre d'alésage ØD1 (mm)	Tolérance H8 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,018
$6.0 < \emptyset D1 \le 10.0$	0 / +0,022
10,0 < ØD1 ≤ 18,0	0 / +0,027
$18,0 < \emptyset D1 \le 30,0$	0 / +0,033
30,0 < ØD1 ≤ 50,0	0 / +0,039
$50,0 < \emptyset D1 \le 80,0$	0 / +0,046
80,0 < ØD1 ≤ 120,0	0 / +0,054
$120,0 < \emptyset D1 \le 180,0$	0 / +0,063
180,0 < ØD1 ≤ 250,0	0 / +0,072
$250,0 < \emptyset D1 \le 315,0$	0 / +0,081
315,0 < ØD1 ≤ 400,0	0 / +0,089
$400,0 < \emptyset D1 \le 500,0$	0 / +0,097
500,0 < ØD1 ≤ 630,0	0 / +0,110

Largeur et rayon du logement

Hauteur	Larg	Poyon		
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	Rayon R2 max (mm)	
7,00	5,95	7,30		
8,00	6,80	8,30	0,50	
10,00	8,50	10,30		
12,00	10,30	12,30		
15,00	12,75	15,30	0,70	
20,00	17,00	20,30		

