DESCRIPTION
Le profil BECA 804 est une bague d’étanchéité constituée d’une lèvre primaire d’étanchéité en PTFE chargé, d’un contre-joint en élastomère, et d’une cage métallique.

AVANTAGES
 Excellente inertie chimique
 Utilisation possible dans l’industrie alimentaire
 Très bon coefficient de frottement, pas d’effet stick-slip
 Diamètre extérieur usiné pour un montage précis dans le logement

APPLICATIONS
Moteurs
Vilebrequins
Alimentaire

MATÉRIAUX
Lèvre d’étanchéité
PTFE vierge
PTFE chargé Verre
PTFE chargé Carbone
Cage métallique
Acier - AISI 1010
Acier inoxydable - AISI 304
Acier inoxydable - AISI 316

CONCEPTION DU JOINT
Tolérance du diamètre extérieur du joint (ØD)

<table>
<thead>
<tr>
<th>Diamètre d’alésage ØD1 (mm)</th>
<th>Cage métallique apparente</th>
<th>Revêtement en élastomère</th>
<th>Revêtement avec bossage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØD1 ≤ 50,0</td>
<td>+0,10 / +0,20</td>
<td>+0,15 / +0,30</td>
<td>+0,20 / +0,40</td>
</tr>
<tr>
<td>50,0 < ØD1 ≤ 80,0</td>
<td>+0,13 / +0,23</td>
<td>+0,20 / +0,35</td>
<td>+0,25 / +0,45</td>
</tr>
<tr>
<td>80,0 < ØD1 ≤ 120,0</td>
<td>+0,15 / +0,25</td>
<td>+0,20 / +0,35</td>
<td>+0,25 / +0,45</td>
</tr>
<tr>
<td>120,0 < ØD1 ≤ 180,0</td>
<td>+0,18 / +0,28</td>
<td>+0,25 / +0,45</td>
<td>+0,30 / +0,55</td>
</tr>
<tr>
<td>180,0 < ØD1 ≤ 300,0</td>
<td>+0,20 / +0,30</td>
<td>+0,25 / +0,45</td>
<td>+0,30 / +0,55</td>
</tr>
<tr>
<td>300,0 < ØD1 ≤ 500,0</td>
<td>+0,23 / +0,35</td>
<td>+0,30 / +0,55</td>
<td>+0,35 / +0,65</td>
</tr>
<tr>
<td>500,0 < ØD1 ≤ 630,0</td>
<td>+0,23 / +0,35</td>
<td>+0,35 / +0,65</td>
<td>+0,40 / +0,75</td>
</tr>
</tbody>
</table>

Tolérance de circularité

<table>
<thead>
<tr>
<th>Diamètre d’alésage ØD1 (mm)</th>
<th>Cage métallique apparente</th>
<th>Revêtement en élastomère</th>
</tr>
</thead>
<tbody>
<tr>
<td>ØD1 ≤ 50,0</td>
<td>0,18</td>
<td>0,25</td>
</tr>
<tr>
<td>50,0 < ØD1 ≤ 80,0</td>
<td>0,25</td>
<td>0,35</td>
</tr>
<tr>
<td>80,0 < ØD1 ≤ 120,0</td>
<td>0,30</td>
<td>0,50</td>
</tr>
<tr>
<td>120,0 < ØD1 ≤ 180,0</td>
<td>0,40</td>
<td>0,65</td>
</tr>
<tr>
<td>180,0 < ØD1 ≤ 300,0</td>
<td>0,25% du diamètre extérieur</td>
<td>0,80</td>
</tr>
<tr>
<td>300,0 < ØD1 ≤ 500,0</td>
<td>0,25% du diamètre extérieur</td>
<td>1,00</td>
</tr>
<tr>
<td>500,0 < ØD1 ≤ 630,0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
DONNÉES TECHNIQUES

Vitesse

Calcul de la vitesse linéaire :

\[v \text{ (m/s)} = \frac{\varnothing \text{ arbre (mm)} \times \text{ vitesse (tr/min)} \times \pi}{60.000} \]

Température / Fluides en contact

<table>
<thead>
<tr>
<th>Fluides en contact</th>
<th>Température maxi en fonction des matériaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huiles minérales</td>
<td></td>
</tr>
<tr>
<td>Huiles pour moteurs</td>
<td>+150°C</td>
</tr>
<tr>
<td>Huiles pour boîtes de vitesse</td>
<td>+150°C</td>
</tr>
<tr>
<td>Huiles pour engrenages hypoïdes</td>
<td>+150°C</td>
</tr>
<tr>
<td>Huiles ATF</td>
<td>+150°C</td>
</tr>
<tr>
<td>Huiles hydrauliques</td>
<td>+150°C</td>
</tr>
<tr>
<td>Graisses</td>
<td>+150°C</td>
</tr>
<tr>
<td>** Fluides difficilement inflammables</td>
<td></td>
</tr>
<tr>
<td>Groupe HFA - Emulsion avec plus de 80% d'eau</td>
<td>+</td>
</tr>
<tr>
<td>Groupe HFB - Solution inverse (eau dans l'huile)</td>
<td>+</td>
</tr>
<tr>
<td>Groupe HFC - Solutions aqueuses de polymères</td>
<td>+</td>
</tr>
<tr>
<td>Groupe HDF - Fluides de synthèse sans eau</td>
<td>+150°C</td>
</tr>
<tr>
<td>Autres fluides</td>
<td></td>
</tr>
<tr>
<td>Fuel de chauffage EL + L</td>
<td>+150°C</td>
</tr>
<tr>
<td>Air</td>
<td>+150°C</td>
</tr>
<tr>
<td>Eau</td>
<td>+</td>
</tr>
<tr>
<td>Eau lessivelle</td>
<td>+</td>
</tr>
<tr>
<td>Plage de température</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>-60°C</td>
</tr>
<tr>
<td>Max.</td>
<td>+200°C</td>
</tr>
</tbody>
</table>
CONCEPTION DE L’ARBRE

Dureté de l’arbre

<table>
<thead>
<tr>
<th>Vitesse de rotation</th>
<th>Dureté en HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v \leq 4,0$ m/s</td>
<td>45 HRC</td>
</tr>
<tr>
<td>$4,0 < v \leq 10,0$ m/s</td>
<td>55 HRC</td>
</tr>
<tr>
<td>$v > 10,0$ m/s</td>
<td>60 HRC</td>
</tr>
</tbody>
</table>

Etats de surface

<table>
<thead>
<tr>
<th></th>
<th>Revêtement</th>
<th>Rmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ra</td>
<td>0,1 à 0,4 µm</td>
<td></td>
</tr>
<tr>
<td>Rz</td>
<td>1,0 à 4,0 µm</td>
<td></td>
</tr>
</tbody>
</table>

Tolérance de l’arbre

<table>
<thead>
<tr>
<th>Diamètre de l’arbre ($Ød1$ (mm))</th>
<th>Tolérance $h11$ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ød1 \leq 3,0$</td>
<td>-0,069 / 0</td>
</tr>
<tr>
<td>$3,0 < Ød1 \leq 6,0$</td>
<td>-0,075 / 0</td>
</tr>
<tr>
<td>$6,0 < Ød1 \leq 10,0$</td>
<td>-0,090 / 0</td>
</tr>
<tr>
<td>$10,0 < Ød1 \leq 18,0$</td>
<td>-0,110 / 0</td>
</tr>
<tr>
<td>$18,0 < Ød1 \leq 30,0$</td>
<td>-0,130 / 0</td>
</tr>
<tr>
<td>$30,0 < Ød1 \leq 50,0$</td>
<td>-0,160 / 0</td>
</tr>
<tr>
<td>$50,0 < Ød1 \leq 80,0$</td>
<td>-0,190 / 0</td>
</tr>
<tr>
<td>$80,0 < Ød1 \leq 120,0$</td>
<td>-0,220 / 0</td>
</tr>
<tr>
<td>$120,0 < Ød1 \leq 180,0$</td>
<td>-0,250 / 0</td>
</tr>
<tr>
<td>$180,0 < Ød1 \leq 250,0$</td>
<td>-0,290 / 0</td>
</tr>
<tr>
<td>$250,0 < Ød1 \leq 315,0$</td>
<td>-0,320 / 0</td>
</tr>
<tr>
<td>$315,0 < Ød1 \leq 400,0$</td>
<td>-0,360 / 0</td>
</tr>
<tr>
<td>$400,0 < Ød1 \leq 500,0$</td>
<td>-0,400 / 0</td>
</tr>
</tbody>
</table>

Chanfrein et rayon

<table>
<thead>
<tr>
<th>Diamètre de l’arbre $Ød1$ (mm)</th>
<th>Diamètre du chanfrein $Ød3$ (mm)</th>
<th>Rayon R (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ød1 \leq 10,0$</td>
<td>$Ød1 - 1,50$</td>
<td>2,00</td>
</tr>
<tr>
<td>$10,0 < Ød1 \leq 20,0$</td>
<td>$Ød1 - 2,00$</td>
<td>2,00</td>
</tr>
<tr>
<td>$20,0 < Ød1 \leq 30,0$</td>
<td>$Ød1 - 2,50$</td>
<td>3,00</td>
</tr>
<tr>
<td>$30,0 < Ød1 \leq 40,0$</td>
<td>$Ød1 - 3,00$</td>
<td>3,00</td>
</tr>
<tr>
<td>$40,0 < Ød1 \leq 50,0$</td>
<td>$Ød1 - 3,50$</td>
<td>4,00</td>
</tr>
<tr>
<td>$50,0 < Ød1 \leq 70,0$</td>
<td>$Ød1 - 4,00$</td>
<td>4,00</td>
</tr>
<tr>
<td>$70,0 < Ød1 \leq 95,0$</td>
<td>$Ød1 - 4,50$</td>
<td>5,00</td>
</tr>
<tr>
<td>$95,0 < Ød1 \leq 130,0$</td>
<td>$Ød1 - 5,50$</td>
<td>6,00</td>
</tr>
<tr>
<td>$130,0 < Ød1 \leq 240,0$</td>
<td>$Ød1 - 7,00$</td>
<td>8,00</td>
</tr>
<tr>
<td>$240,0 < Ød1 \leq 500,0$</td>
<td>$Ød1 - 11,00$</td>
<td>12,00</td>
</tr>
</tbody>
</table>

Battement de l’arbre

![Graphique du battement de l’arbre](image)

Excentricité

![Graphique de l’excentricité](image)
CONCEPTION DU LOGEMENT

Etats de surface
- \(Ra \): 0,8 à 3,2 µm
- \(Rz \): 6,3 à 16,0 µm
- \(R_{\text{max}} \): ≤ 16,0 µm

Tolérance du logement

<table>
<thead>
<tr>
<th>Diamètre d’alésage ØD1 (mm)</th>
<th>Tolérance H8 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,0 < ØD1 ≤ 6,0</td>
<td>0 / +0,018</td>
</tr>
<tr>
<td>6,0 < ØD1 ≤ 10,0</td>
<td>0 / +0,022</td>
</tr>
<tr>
<td>10,0 < ØD1 ≤ 18,0</td>
<td>0 / +0,027</td>
</tr>
<tr>
<td>18,0 < ØD1 ≤ 30,0</td>
<td>0 / +0,033</td>
</tr>
<tr>
<td>30,0 < ØD1 ≤ 50,0</td>
<td>0 / +0,039</td>
</tr>
<tr>
<td>50,0 < ØD1 ≤ 80,0</td>
<td>0 / +0,046</td>
</tr>
<tr>
<td>80,0 < ØD1 ≤ 120,0</td>
<td>0 / +0,054</td>
</tr>
<tr>
<td>120,0 < ØD1 ≤ 180,0</td>
<td>0 / +0,063</td>
</tr>
<tr>
<td>180,0 < ØD1 ≤ 250,0</td>
<td>0 / +0,072</td>
</tr>
<tr>
<td>250,0 < ØD1 ≤ 315,0</td>
<td>0 / +0,081</td>
</tr>
<tr>
<td>315,0 < ØD1 ≤ 400,0</td>
<td>0 / +0,089</td>
</tr>
<tr>
<td>400,0 < ØD1 ≤ 500,0</td>
<td>0 / +0,097</td>
</tr>
<tr>
<td>500,0 < ØD1 ≤ 630,0</td>
<td>0 / +0,110</td>
</tr>
</tbody>
</table>

Largeur du logement

<table>
<thead>
<tr>
<th>Hauteur H1 (mm)</th>
<th>Largeur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L2min (mm)</td>
</tr>
<tr>
<td>7,00</td>
<td>5,95</td>
</tr>
<tr>
<td>8,00</td>
<td>6,80</td>
</tr>
<tr>
<td>10,00</td>
<td>8,50</td>
</tr>
<tr>
<td>12,00</td>
<td>10,30</td>
</tr>
<tr>
<td>15,00</td>
<td>12,75</td>
</tr>
<tr>
<td>20,00</td>
<td>17,00</td>
</tr>
</tbody>
</table>

Rayon du logement

<table>
<thead>
<tr>
<th>Hauteur H1 (mm)</th>
<th>Rayon R2 max (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,00</td>
<td>0,50</td>
</tr>
<tr>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>10,00</td>
<td></td>
</tr>
<tr>
<td>12,00</td>
<td></td>
</tr>
<tr>
<td>15,00</td>
<td>0,70</td>
</tr>
<tr>
<td>20,00</td>
<td></td>
</tr>
</tbody>
</table>