

BAGUES D'ÉTANCHÉITÉ INVERSÉES

OVBCW

O DESCRIPTION

Le profil OVBCW est une bague d'étanchéité inversée constituée d'une simple cage métallique intérieure, avec des systèmes de bossage en élastomère sur la moitié de la cage coté extérieur, et d'une lèvre primaire d'étanchéité sans ressort.

O AVANTAGES

Bonne rigidité radiale, en particuliers pour les grands diamètres

Bonne stabilité au montage, évitant les effets de rebond

Bonne étanchéité statique

Bonne compensation de dilatation thermique

Bon transfert de chaleur

Montage facile avec des effets de rebond très limités

Etanchéité aux fluides à forte viscosité

Lèvre d'étanchéité primaire générant de faibles frottements et de faibles génération de chaleur

APPLICATIONS

Tous types d'applications rotatives Moyeux rotatifs Arbres fixes

O MATÉRIAUX

Elastomère

ACM 70 - 75 Shore A EPDM 70 - 75 Shore A FKM 70 - 75 Shore A HNBR 70 - 75 Shore A

NBR 70 - 75 Shore A Cage métallique

Acier - AISI 1010

Acier inoxydable - AISI 304

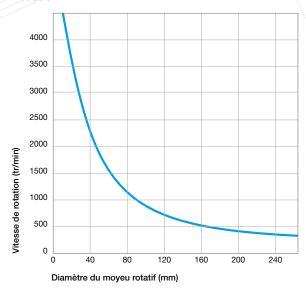
Acier inoxydable - AISI 316

CONCEPTION DU JOINT

Tolérance du diamètre intérieur du joint (Ød)

Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère	Revêtement avec bossage
Ød1 ≤ 50,0	-0,20 / -0,10	-0,30 / -0,15	-0,40 / -0,20
$50,0 < \emptyset d1 \le 80,0$	-0,23 / -0,13	-0,35 / -0,20	-0,45 / -0,25
$80,0 < \emptyset d1 \le 120,0$	-0,25 / -0,15	-0,35 / -0,20	-0,45 / -0,25
$120,0 < \emptyset d1 \le 180,0$	-0,28 / -0,18	-0,45 / -0,25	-0,55 / -0,30
$180,0 < \emptyset d1 \le 300,0$	-0,30 / -0,20	-0,45 / -0,25	-0,55 / -0,30
$300,0 < \emptyset d1 \le 500,0$	-0,35 / -0,23	-0,55 / -0,30	-0,65 / -0,35

Tolérance de circularité


Diamètre de l'arbre Ød1 (mm)	Cage métallique apparente	Revêtement en élastomère
Ød1 ≤ 50,0	0,18	0,25
$50.0 < Ød1 \le 80.0$	0,25	0,35
80,0 < Ød1 ≤ 120,0	0,30	0,50
$120,0 < \emptyset d1 \le 180,0$	0,40	0,65
180,0 < Ød1 ≤ 300,0	0,25% du diamètre intérieur	0,80
$300,0 < \emptyset d1 \le 500,0$	0,25% du diamètre intérieur	1,00

Tolérance du diamètre extérieur du joint (ØD)

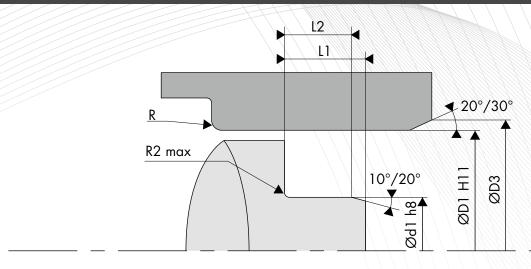
Libre et sans contrainte, le diamètre extérieur de la lèvre d'étanchéité est toujours plus grand que le diamètre du moyeu rotatif. Le pré-serrage ou l'interférence désigne la différence entre ces deux valeurs. En fonction du diamètre du moyeu, on peut considérer de manière générale que le diamètre de la lèvre d'étanchéité est supérieur entre 0,8 et 3,5 mm.

O DONNÉES TECHNIQUES

Vitesse

Calcul de la vitesse linéaire :

v (m/s) =
$$\frac{[\emptyset \text{ moyeu rotatif (mm) } \times \text{ vitesse (tr/min) } \times \pi]}{60.000}$$


Pression

Les bagues d'étanchéité inversées avec lèvre d'étanchéité primaire sans ressort sont exclusivement utilisées sans pression.

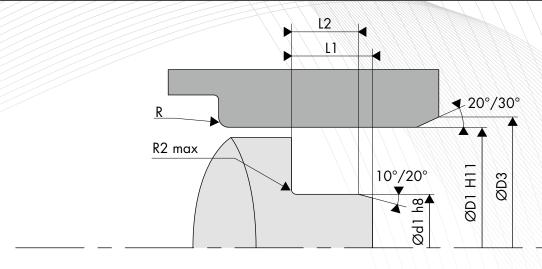
Pour une utilisation sous pression entre 0,02 et 0,05 MPa maxi, il est préférable de s'orienter vers des bagues d'étanchéité inversées avec ressort.

Température / Fluides en contact

Fluides en contact		Température maxi en fonction des matériaux						
		ACM	AEM	EPDM	FKM	HNBR	NBR	VMQ
	Huiles pour moteurs	+130°C	+130°C	_	+170°C	+130°C	+100°C	+150°C
	Huiles pour boîtes de vitesse	+120°C	+130°C	_	+150°C	+110°C	+80°C	+130°C
Huiles minérales	Huiles pour engrenages hypoïdes	+120°C	+130°C	_	+150°C	+110°C	+80°C	_
	Huiles ATF	+120°C	+130°C	_	+170°C	+130°C	+100°C	_
	Huiles hydrauliques	+120°C	+130°C	_	+150°C	+130°C	+90°C	_
	Graisses	-	+130°C	_	-	+100°C	+90°C	_
	Groupe HFA - Emulsion avec plus de 80% d'eau	-	_	_	-	+70°C	+70°C	+60°C
Fluides difficilement	Groupe HFB - Solution inverse (eau dans l'huile)	-	_	_	_	+70°C	+70°C	+60°C
inflammables	Groupe HFC - Solutions aqueuses de polymères	-	_	+60°C	-	+70°C	+70°C	_
	Groupe HFD - Fluides de synthèse sans eau	-	_	_	+150°C	_	_	_
	Fuel de chauffage EL + L	-	-	-	-	+100°C	+90°C	-
Autres fluides	Air	+150°C	+150°C	+150°C	+200°C	+130°C	+100°C	+200°C
Autres Huides	Eau	-	-	+150°C	+100°C	+100°C	+90°C	-
	Eau lessivelle	-	_	+130°C	+100°C	+100°C	+90°C	_
Plage de température	Min.	-25°C	-40°C	-45°C	-20°C	-30°C	-30°C	-60°C
Plage de temperature	Max.	+150°C	+150°C	+150°C	+200°C	+150°C	+100°C	+200°C

O CONCEPTION DE L'ARBRE FIXE

Etats de surface


Ra	0,8 à 3,2 μm
Rz	6,3 à 16,0 μm
Rmax	≤ 16,0 µm

Tolérance de l'arbre fixe

Diamètre de l'arbre Ød1 (mm)	Tolérance h8 (mm)
3,0 < Ød1 ≤ 6,0	-0,018 / 0
$6.0 < \emptyset d1 \le 10.0$	-0,022 / 0
10,0 < Ød1 ≤ 18,0	-0,027 / 0
$18,0 < \emptyset d1 \le 30,0$	-0,033 / 0
$30,0 < \emptyset d1 \le 50,0$	-0,039 / 0
50,0 < Ød1 ≤ 80,0	-0,046 / 0
80,0 < Ød1 ≤ 120,0	-0,054 / 0
120,0 < Ød1 ≤ 180,0	-0,063 / 0
180,0 < Ød1 ≤ 250,0	-0,072 / 0
$250,0 < \emptyset d1 \le 315,0$	-0,081 / 0
315,0 < Ød1 ≤ 400,0	-0,089 / 0
$400,0 < \emptyset d1 \le 500,0$	-0,097 / 0

Largeur et rayon de l'arbre fixe

Hauteur	Larç	Rayon	
H1 (mm)	L2min (H1 x 0,85)	L1min (H1+0,3)	R2 max (mm)
7,00	5,95	7,30	
8,00	6,80	8,30	0,50
10,00	8,50	10,30	
12,00	10,30	12,30	
15,00	12,75	15,30	0,70
20,00	17,00	20,30	

CONCEPTION DU MOYEU ROTATIF

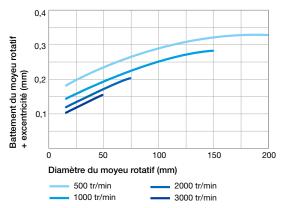
Dureté du moyeu rotatif

Vitesse de rotation	Dureté en HRC
v ≤ 4,0 m/s	45 HRC
$4.0 < v \le 10.0 \text{ m/s}$	55 HRC
v > 10,0 m/s	60 HRC

Etats de surface

Ra *	0,2 à 0,8 μm
Rz	1,0 à 4,0 μm
Rmax	≤ 6,3 µm

*Ra = 0,1 µm pour les applications rigoureuses


Tolérance du moyeu rotatif

Diamètre du moyeu rotatif ØD1 (mm)	Tolérance H11 (mm)
3,0 < ØD1 ≤ 6,0	0 / +0,075
$6.0 < \emptyset D1 \le 10.0$	0 / +0,090
10,0 < ØD1 ≤ 18,0	0 / +0,110
$18,0 < \emptyset D1 \le 30,0$	0 / +0,130
$30,0 < \emptyset D1 \le 50,0$	0 / +0,160
$50,0 < \emptyset D1 \le 80,0$	0 / +0,190
80,0 < ØD1 ≤ 120,0	0 / +0,220
120,0 < ØD1 ≤ 180,0	0 / +0,250
180,0 < ØD1 ≤ 250,0	0 / +0,290
$250,0 < \emptyset D1 \le 315,0$	0 / +0,320
315,0 < ØD1 ≤ 400,0	0 / +0,360
$400,0 < \emptyset D1 \le 500,0$	0 / +0,400

Chanfrein et rayon

Diamètre du moyeu rotatif ØD1 (mm)	Diamètre du chanfrein ØD3 (mm)	Rayon R (mm)
ØD1 ≤ 10,0	ØD1 + 1,50	2,00
$10,0 < \varnothing D1 \leq 20,0$	ØD1 + 2,00	2,00
$20.0 < \emptyset D1 \le 30.0$	ØD1 + 2,50	3,00
$30,0 < \varnothing D1 \leq 40,0$	ØD1 + 3,00	3,00
$40.0 < \emptyset D1 \le 50.0$	ØD1 + 3,50	4,00
$50.0 < \varnothing D1 \leq 70.0$	ØD1 + 4,00	4,00
$70.0 < \emptyset D1 \le 95.0$	ØD1 + 4,50	5,00
$95,0 < \emptyset D1 \le 130,0$	ØD1 + 5,50	6,00
$130,0 < \emptyset D1 \le 240,0$	ØD1 + 7,00	8,00
$240,0 < \emptyset D1 \le 500,0$	ØD1 + 11,00	12,00

Battement du moyeu rotatif et excentricité

